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Droplet impact on a dry surface: triggering
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Droplet impact on a dry solid surface is investigated experimentally. A small obstacle
made by layers of adhesive tape is located on the solid surface at some distance from
the impact centre. The splashing of the drop starts at the tape, as a sheet of liquid
shoots upwards. Angle, speed and dynamics of this liquid sheet are investigated as a
function of the distance from the impact centre to the obstacle and its height. Reynolds
and Weber numbers are kept constant. Volume-of-fluid simulations reproduce the
experiments qualitatively. Measured sheet angles are compared with the predictions
of a simple theory.

1. Introduction
Splashing, corolla crown formation, and jets are well-known features of droplet

impacts. Famous photographs (Edgerton & Killian 1954; Worthington 1876) and
everyday-life situations have popularized these phenomena. Droplet impact, though
being an old and almost classical problem, has benefited from numerous recent studies
enhanced by both the improvement of vizualisation and experimental techniques and
by the tremendous development of numerical techniques and power (Stow & Hadfield
1981; Yarin & Weiss 1995; Cossali, Coghe & Marengo 1997; Gueyffier & Zaleski
1998; Rieber & Frohn 1998; Weiss & Yarin 1999; Bussmann, Chandra & Mostaghimi
2000; Wang & Chen 2000; Davidson 2000; Rioboo, Marengo & Tropea 2001;
Thoroddsen 2002; Roisman & Tropea 2002; Josserand & Zaleski 2003). Fluid impacts
appear in various contexts and many technological applications. Examples include
ink-jet printing (Chaudhary & Maxworthy 1980; Wallace 2001), sea-wave impacts
(Cooker & Peregrine 1995), and coating processes (Og̃uz & Prosperetti 1990).
Splashing and spreading also correspond to a dramatic change in the topological
structures of the free-surface flow after impact. Understanding the transition from one
to the other is of fundamental importance for our knowledge of such flows (Peregrine
1981; Rein 1993).

Consider the simple case of a vertical droplet impact on a horizontal dry solid
surface. Depending on the parameters one can observe a large variety of results
(Rioboo et al. 2001). For instance, low surface tension and low viscosity (large Weber
and Reynolds numbers) promote splash, secondary droplet breakup and/or corolla
formation. On the other hand, a high viscosity (low Reynolds number) can suppress
the splash and only droplet deposition is observed. Similarly, the solid-surface
properties have an effect on the formation of splashes. In particular, experiments
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have shown that the rougher the solid, the more likely it is that the droplet splashes
(Rioboo et al. 2001). The investigation of this as yet unexplained effect motivated the
present work. Spreading is sought for good ink-jet printing but splashes are desirable
in combustion chambers for instance. Thus, the understanding and control of this
splashing/spreading transition are needed both from a fundamental and a practical
point of view. When only capillarity and viscosity are considered, experimental
laws have been obtained for both dry and wet surfaces (Mundo, Sommerfeld &
Tropea 1995). They involve the dimensionless splashing parameter K = We1/2Re1/4.
The critical value Kc that separates spreading from splashing behaviour depends on
other experimental parameters. For impacts on thin liquid films (Yarin & Weiss 1995;
Josserand & Zaleski 2003) Kc depends on the dimensionless ratio between the droplet
radius and the liquid layer thickness. For impacts on dry surfaces (Rioboo et al. 2001)
Kc depends on the surface roughness.

The present study is an attempt to understand this last dependence through a model
experiment. We describe the impact of a droplet on a smooth solid surface with a
single step change of the surface elevation. This localized surface fluctuation forms
an obstacle which deviates the rapidly spreading liquid layer. In this first approach,
we focus on the phenomenological description of the dynamics since we restrict our
presentation to a single choice of Reynolds and Weber numbers. A few numerical
and experimental studies have recently been devoted to drop impact on non-flat
surfaces: some are in the context of molten-metal droplet impact (Liu, Lavernia &
Rangel 1995; Ghafouri-Azar et al. 2003) while another considers controlled surface
roughness (Range & Feuillebois 1998). For molten-metal droplet impact, the surface
fluctuation is created by the preceeding impacting droplet. Although we observe
splashing results similar to those of Ghafouri-Azar et al. (2003), for molten droplets
the dynamics is more complex to analyse since the obstacle geometry is not controlled
at all, leaving aside the temperature field and phase transition influences. In the other
studies the surface fluctuations were controlled, either by the addition of grooves on
the flat surface (Range & Feuillebois 1998) or by considering numerical simulations
of drop impact on periodically perturbed surfaces (Liu et al. 1995).

2. Experimental setup
Images of impacting droplets are obtained with a classical droplet generator

and experimental facility. Experiments are performed with demineralized water.
Droplets fall from a precision syringe with a diameter D = 3.7 mm and impact a
plate at speed U = 3.3 m s−1. The Reynolds Re= UD/ν =12200 and Weber number
We= ρU 2D/σ = 514 are fixed throughout the experiments. The Froude number, the
ratio between gravity force and inertia Fr = gD/U 2, value of 0.0037 shows that gravity
can be neglected during the impact dynamics. Droplets prior to impingement were
observed and the sphericity verified (diameter distorsion is less than 10%).

The plate is made of inox coated with Teflon in order to avoid wetting as much as
possible. An obstacle is set in the path of the spreading droplet by one or several layers
of adhesive tape. The height of the obstacle is controlled by the number of layers and
the distance between the obstacle and the impact point is measured by a micrometer
table. Each layer of tape is 0.035 ± 0.002 mm thick and is placed orthogonally to
the observation plane. The obstacle is therefore non-axisymmetrical. The impact
plate offers a very smooth surface (Ra < 0.5 µm, Ra being the arithmentical mean
roughness and measured before Teflon coating) and its temperature is controlled at
25 ◦C. Pictures are obtained with a Stanford Optics intensified CCD camera triggered
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Figure 1. Impact on the 0.035mm obstacle (from left to right 1000, 1500 and 1750 µs after
impact). A sketch of the measurement of the angle of deviation is shown on the right-hand
figure.

Figure 2. Impact on the 0.07mm obstacle (from left to right: 1000, 1500, 2000 µs
after impact).

by a light barrier consisting of a laser diode opposite a photomultiplier. This solution
has been retained in order to obtain maximum repeatability of camera triggering. The
triggering is adjusted on the decreasing rate of the photomultiplier signal. Backlighting
is obtained with a Spectra Physics 355 nm Argon laser at 300 mW diffused by acid-
polished glass. A specific micro-telescope is mounted on the camera allowing a 1 cm
area to be observed. In order to observe small-scale features of the splashing on an
obstacle, time exposure has been lowered to 2 µs. Different steps of the impact process
are obtained by controlling the delay of camera triggering with the photomultiplier
gate. Velocity measurements during impact are verified by multi-exposure images
(not shown here). Repeatability of the overall imaging procedure is improved by
manually eliminating obviously failed images, mostly due to parasite light triggering
the photomultiplier. Considering the different error sources, we estimate the error
made in diameter and velocity measurements at 2%, whereas the error made in other
values (such as angles and liquid thicknesses) is 5%. Rioboo (2001) gives detailed
error estimates for a very similar experimental setup. Although repeatability has been
a permanent concern in developing the experimental setup, each time step of impact
is repeated until three almost identical features are obtained.

3. Results and discussion
Three series of impacts with an obstacle are shown for obstacle thicknesses e = 0.035,

0.07 and 0.2 mm. The distance dobs between the impact point of the droplet and the
obstacle has been varied, from 0 to 4.5 mm. In figures 1 to 3, different stages of impact
and splashing are shown.

Figure 1 pictures a droplet falling on a plate with a 0.035 mm-high obstacle placed
2 mm from the droplet impact centre. Figure 2 shows a droplet falling on a plate with
an obstacle 0.07 mm high placed closer to the centre. Last, figure 3 shows a droplet
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Figure 3. Impact on the 0.2mm obstacle (from left to right: 1000, 1500, 2500 µs after
impact).

falling on a plate with an obstacle 0.2 mm high at a distance similar to the previous
one. Time t = 0 is when the droplet touches the plate (not the obstacle).

The onset of a splash when the droplet arrives on the obstacle is clearly seen in
these figures. The angle, width and velocity of the liquid sheet that shoots up upon
impact vary with the distance from the impact centre to the obstacle and the height
of the obstacle. Figures 1, 2 and 3 also indicate that the higher the obstacle, the more
vertical the liquid sheet will be. In figure 4(a), sheet angles are plotted against time.
In a first phase of the interaction of the jet with the obstacle the liquid is ejected
almost vertically. The liquid sheet fed by the spreading film develops as the deviation
angle decreases, apparently asymptoting a steady state.

In figure 4(b) this stabilized apparent angle of the liquid sheet is plotted against
the dimensionless (by droplet diameter) obstacle position for a 0.07 mm thick layer.
The plotted angle is that between the median straight line of the liquid sheet and the
obstacle plate. A sketch of this measured angle is superimposed on the experimental
photograph in figure 1. When the droplet falls directly on the obstacle (distance of
droplet impact point to obstacle is less than dropet radius) no splash is observed (angle
0◦). When the splash occurs, the direction of the liquid sheet is more vertical when the
impact is closer to the obstacle. In fact, if an encounter with the obstacle happens in
the early stages of spreading, the liquid film seems to be projected vertically, whereas
when the obstacle is met at the end of spreading, the liquid film only climbs over
the obstacle. This may result from different thicknesses of the liquid film at different
stages of spreading, confirming a theoretical prediction made by Josserand & Zaleski
(2003) and discussed in § 5 below, that the film becomes thicker as time advances.
This is a rather difficult fact to verify experimentally with an acceptable precision.

Liquid sheet length can be measured as the distance from the obstacle position to
the point where filaments appear at the upper end (figure 5). Its evolution with time
shows that the liquid sheet has an almost-constant velocity. This interesting feature
may be explained as follows. First, when the film is ejected from the droplet, theory
predicts that this happens at a constant velocity (Josserand & Zaleski 2003). Second,
after ejection the velocity is mostly conserved: we use Teflon-coated plates, which are
non-wetting. Thus, the singular viscous dissipation near the contact line is avoided.
With little dissipation, the velocity remains constant. Moreover we have observed
that the sheet thickness remains roughly constant throughout the explored time span,
at around 0.5 mm for obstacles of height 0.035 and 0.07 mm, and at 0.7 mm for the
0.2 mm obstacle.

Secondary droplet formation is enhanced by shorter distances from the obstacle
as less momentum is dissipated between the instant of impact on the plate and the
instant of first contact with the obstacle. Also, large obstacles enhance secondary
droplet formation. When plotting on the same image the droplet contours during
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Figure 4. (a) Angle of liquid sheet versus dimensionless time. (Symbols represent experimental
measurements, lines represent their interpolation.) (b) Angle of liquid finger versus the
dimensionless obstacle distance. +, experimental values; - - -, theoretical prediction; ×, numeri-
cal simulation results.

impact, we observe that with the smaller obstacle (figure 6a), the sheet develops to a
greater length than with the medium size obstacle (figure 6b). One may also notice
the difference between the centre figure (figure 6b 0.07 mm obstacle) and the left and
right figures (0.035 figure 6a and 0.2 mm figure 6c): the base of the sheet seems fixed
for the 0.035 and 0.2 mm cases whereas it advances over the obstacle with finger
development for the 0.07 mm case.

4. Numerical simulation
We now compare the dynamics observed in the experiments with numerical

simulations of axisymetrical drop impacts. We use here a volume-of-fluid (VOF)
numerical scheme already used by two of us for the study of droplet impacts on thin
liquid layers (Josserand & Zaleski 2003).
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Figure 5. Dimensionless length of the liquid sheet versus dimensionless time.
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Figure 6. Droplet contours at various times for (a) e = 0.035mm, (b) e =0.07mm and
(c) e =0.2 mm. Distances are made dimensionless by droplet diameter.

The main additional difficulties in modelling drop impact on a solid surface arise
at the moving contact line. This contact line is located at the boundary between gas,
liquid and solid. It still poses a hard challenge for theory and modelling (de Gennes
1985). In particular, the equations of hydrodynamics lead to a stress singularity near
the moving contact line (Dussan V. & Davis 1974). This mathematical singularity
can be avoided through still-debated physical cut-off prescriptions (de Gennes 1985;
Oron, Davis & Bankoff 1997; Shikmurzaev 1993) but researchers lack as yet a full
understanding of the dynamics there.

For numerical simulations, a major concern is to suppress this unphysical
singularity. The few numerical simulations that have been reported in the literature
mostly involve a wall-slip condition, which suppresses in particular the moving
contact line singularity (Pasandideh-Fard et al. 1996; Bussmann et al. 2000; Renardy,
Renardy & Li 2001; Renardy et al. 2003; Reznik & Yarin 2002).

We solve the Navier–Stokes equation for axisymmetric incompressible flow with
surface tension written in the one-fluid formulation

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇p + µ�u + σκδsn, (4.1)



Droplet impact: triggering the splash 53

where u is the fluid velocity, ρ the fluid density and p the pressure. The vector n
denotes the normal to the interface, σ is the surface tension and δs the delta function
restricted to the interface. Gravity is neglected since the Froude number is the same
as for the experiments. The continuity equation is

∇ · u = 0. (4.2)

The discretization is performed on a marker-and-cell (MAC) grid and pressure
is solved by the explicit projection method making use of multigrid convergence.
The interface is followed by the volume-of-fluid/piecewise-linear-interface-calculation
(VOF/PLIC) method of Li (1995) and the capillary force is computed through a
variant of the continuous surface stress and continuous surface force methods
(Lafaurie et al. 1994; Scardovelli & Zaleski 1999; Gueyffier et al. 1999) adapted to
axisymmetric geometry. A full description of the method can be found in (Gueyffier
et al. 1999) except for the adaptation to axisymmetric geometry which is described in
Gueyffier (2000).

The additional obstacle layer is made circular here for numerical convenience
(axisymmetry) while experiments were made with straight adhesive tape. Boundary
conditions are crucial for the modelling. On the solid wall we impose a no-slip
condition u =0, and Neuman conditions are taken for the colour function: the
derivative in the direction normal to the solid vanishes, i.e. ∂c/∂n = 0. This boundary
condition imposes a constant contact angle of 90◦ which corresponds to intermediate
wetting. Surprisingly, we have observed numerically that this boundary condition
coupled with the no-slip condition results in no singular viscous dissipation near the
moving contact line. The numerical discretization acts here as a sufficient cut-off.

These conditions are now applied for all the solid boundaries including the obstacle.
However to simplify the writing of the code, the u · n = 0 boundary condition is not
applied during the projection step, i.e. the Poisson equation for the pressure is solved
with a flat boundary instead of the obstacle. The pressure field is thus not accurately
solved near the obstacle and local mass conservation may not be satisfied: a zero
mass flow across the obstacle is not imposed. However in the simulations reported
below the mass loss during the runs is less than 5%.

These numerical simplifications have made quantitative comparisons between
experiments and numerics hard to obtain. In particular, we emphasize that
the difference between our axisymmetric numerics and the straight experimental
configuration should be relevant at small distance only. For fluid parameters (densities,
viscosities, surface tension) similar to the experimental values, the thickness of the
spreading film was found much thinner than in experiments. Such a discrepancy,
probably due to the absence of roughness at the idealized wall surface, leads to very
different dynamics since the liquid sheet splashes promptly at the obstacle and breaks
up into tiny droplets. To avoid this effect and to increase the numerical film thickness,
we have used a higher liquid viscosity. Moreover, the gas density was taken twice
higher than the air density in order to diminish numerical instabilities due to high
density ratio. With these restrictions, we have performed numerical simulations for
physical parameters as close as possible to the experimental value: drop diameter
D = 3.6 mm, liquid density that of water, surface tension σ = 0.07 SI, so that the
Weber number We= 514 is equal to that of the experiment while the Reynolds
number Re = 2400 is 5 times smaller. The step height is 0.07 mm. Figure 7 shows
snapshots of the impact dynamics for a distance of the obstacle from the impact
centre of dobs =0.66D.
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Figure 7. Numerical simulation of droplet impact for We= 514, Re= 2400 and dobs/D = 2/3.
The figures show the density profiles at times 200, 400 and 600 µs after impact.

Figure 8. Deviated liquid jet of impacting drops with We= 514, Re= 2400 and varying
obstacle distance; dobs/D = 0.4, 0.58 and 0.83 from left to right.

We retrieve the general features of the experiments: splashing appears at the
obstacle and generates a deviated liquid sheet. The deviation of the liquid is initially
almost vertical, then converges to an almost constant angle. We have also varied the
obstacle distance from the impact centre as shown on figure 8. We notice again
that increasing the obstacle distance decreases the liquid deviation as observed
experimentally. Moreover, the angles of deviation for the different ratios dobs/D

computed numerically have been drawn on figure 4(b) for qualitative comparisons.
The angles from the numerics are systematically smaller than those observed in
experiments, but the general trend of the dependence on the ratio dobs/D is retrieved.

5. Theory
We want to study the jet–obstacle interaction in a simplified framework and so

consider two-dimensional geometry. We explore the steady flow of a jet of height
h, speed U along an horizontal surface encountering a step change e of the surface
elevation and thus deviated by an angle α from the horizontal axis. The Reynolds
number is considered high enough so that the influence of viscosity can be neglected
in the first approximation. In writing momentum conservation in a region enclosing
the step we find

u2h = u2h cos α +

∫ e

0

p dy. (5.1)

Without viscosity, the pressure must scale with ρu2. From Bernoulli’s theorem it is
ρu2/2 in the bottom corner below the step at y = 0. The condition p =0 holds on
the free surface and thus p = 0 also at the top corner at y = e where the free surface
starts. Thus it is reasonable to assume that p interpolates between these two values,
in a way that weakly depends on α. This leads to

e

h
= C ′′(1 − cosα), (5.2)

where C ′′ is a dimensionless numerical constant, depending on α. It is possible to
verify (5.2) by direct numerical simulation (results obtained with R. Scardovelli and
S. Popinet will be published elsewhere). Although a potential flow theory exists
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(Birkhoff & Zarantonello 1957), there is no certainty that the actual flow is potential
and preliminary results from numerical simulations seem to indicate that it is not,
but that a relation of the form (5.2) does hold.

Going back to the full problem, we identify h with the thickness of the rapidly
expanding film, which is difficult to determine. However a simple estimate can be
made as follows. It has been argued by two of us (Josserand & Zaleski 2003) that the
thickness of the jet is of the order h � C

√
νt where t is the time from drop impact,

and C is a dimensionless constant. Such a scaling was initially introduced by Yarin &
Weiss (1995) where the time was taken as the impact frequency of a train of droplets.
Estimating t here as the inertial time t ∼ dobs/U we obtain

h � C
√

νdobs/U. (5.3)

We choose C as a fitting parameter and obtain from (5.3) and (5.2) the dashed line
in figure 4(b). The general trend is in agreement with the experiment but there is
obviously room for improvement: more refined estimates for h could be made for
instance.

To summarize, we have observed the triggering of a splash by a small obstacle.
Numerical simulations are in qualitative agreement and show similar dependence
of the dynamics on the distance of the obstacle from the impact centre. A simple
potential flow model also reproduces the trend observed in the experiments. However
more refined studies, both experimental and theoretical, are needed to determine
the thickness of the spreading layer. The present study could also be expanded to
investigate splashes on a rough surfaces, modelling the roughness as a collection of
small obstacles.
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